УДК 547.495.9

КИНЕТИКА КАТОДНОГО ВЫДЕЛЕНИЯ ЭЛЕКТРОЛИТИЧЕСКОГО ВОДОРОДА НА ЖЕЛЕЗЕ И ЕГО ТВЕРДОФАЗНАЯ ДИФФУЗИЯ ЧЕРЕЗ СТАЛЬНУЮ МЕМБРАНУ В ВОДНО-ЭТИЛЕНГЛИКОЛЕВЫХ РАСТВОРАХ НС1 В ПРИСУТСТВИИ О-ФТОРФЕНИЛБИГУАНИДИНА (0-ФФБГ)

© Д.В. Балыбин, О.Ю. Кузина, В.И. Вигдорович, Л.Е. Цыганкова

Ключевые слова: твердофазная диффузия; электрод сравнения; латеральная диффузия; о-фторфенилбигуанидин; водородный электрод; кинетика PBB; дисковый электрод; стальная мембрана. Исследовано влияние концентрации о-фторфенилбигуанидина (0,5–40 мМ) на кинетику реакции выделения водорода на железе в обводненных этиленгликолевых (10 мас. % H₂O) растворах с составом электролита x M HC1 + + (1 – x) M LiC1. Показано, что в обводненных средах при введении и по мере возрастания концентрации офторфенилбигуанидина наблюдается переход от одной замедленной стадии к другим согласно ряду: замедленная рекомбинация \rightarrow замедленная латеральная диффузия \rightarrow замедленный разряд \rightarrow замедленная латеральная диффузия \rightarrow замедленный разряд.

Эксплуатация различных конструкционных материалов в природных и технологических жидких и газовых средах способствует протеканию коррозии полностью или частично с водородной деполяризацией, что приводит к диффузии водорода в глубинные слои металла, наводороживанию и, как следствие, негативному влиянию на его механические характеристики. Наводороживание влечет за собой огромные материальные потери, экологические и социальные проблемы. Большинство работ по изучению кинетики и механизма наводороживания металлов выполнены в водных средах. Однако в условиях интенсивного развития химической технологии происходит все большее внедрение в производство неводных и смешанных растворителей, что ставит вопрос о выяснении роли природы их составляющих в электрохимических процессах.

Очевидно, что изменение соотношения компонентов смешанного сольвента позволяет оценить влияние природы молекул, участвующих в объемной (ионов) и поверхностной сольватации, на кинетику и механизм реакции выделения водорода, степень заполнения поверхности металла адсорбированным водородом и его диффузию через мембрану и, в конечном счете, - на наводороживание. В литературе отсутствует интерпретация с единых позиций связи кинетики и механизма катодного восстановления ионов водорода с закономерностями твердофазной диффузии водорода из растворителей различной природы. Полученные в дальнейшем результаты могут быть учтены и использованы при разработке новых мер борьбы с наводороживанием и водородным растрескиванием в неводных средах соответствующими лабораториями научно-исследовательских институтов и коррозионными службами промышленных предприятий. Они важны при создании общей теории наводороживания, в процессе разработки и чтения общих и специальных курсов по вопросам коррозии металлов и электрохимии, студентам высших учебных заведений ряда естественно-научных и технических специальностей. Большое значение для выяснения механизма электрохимической реакции катодного выделения и определения причин возникновения перенапряжения имеет исследование влияния состава раствора на величину перенапряжения.

Реакция катодного выделения водорода (PBB) – одна из наиболее изученных и значимых для понимания закономерностей электрохимической кинетики [1– 2]. Трудно переоценить ее важность и для решения практических задач, в частности, защиты металлов от коррозии [3–6], и проблем водородной энергетики, связанных с получением и аккумулированием электролитического водорода.

При постулировании быстрого образования и удаления газовых пузырей H₂ PBB может быть представлена как двухстадийный процесс с первой стадией разряда сольватированных ионов водорода, которая без учета твердой фазы, не несущего дополнительной информации для дальнейшего обсуждения, имеет вид:

$$\mathbf{H}^{+}_{Solv} + e \to \mathbf{H}_{agc} + Solvent, \tag{1}$$

где *Solvent* – молекула растворителя. Последующий сток адсорбированных атомов водорода протекает по уравнениям:

$$H_{a,c} + H^+_{Solv} + e \rightarrow H_2 + Solvent$$

(реакция Гейровского) (2)

или

$$H_{anc} + H_{anc} \rightarrow H_2$$
 (реакция Тафеля). (3)

Любая из стадий (1), (2) и (3) может быть замедлена. В общепринятой схеме (1)–(3) не учитывается, что в условиях высоких степеней заполнения скорость РВВ лимитирующей может быть и латеральная диффузия H_{алс}. В ряде исследований показано, что в смешанных растворителях в системах $C_2H_4(OH)_2 - H_2O$ и $C_2H_5OH - H_2O$ с составом электролита *x* M HCl + (1 – *x*) M LiCl можно целенаправленно менять на железе природу замедленной стадии PBB [7–12]. Так, при возрастании мольной доли воды в этиленгликоле в таких растворах наблюдается последовательный переход: замедленный разряд \rightarrow замедленная рекомбинация \rightarrow замедленный разряд [7–9]. Введение воды в сухие этанольные растворы HC1 позволяет также сменить замедленную рекомбинацию лимитирующим разрядом [7, 10, 11]. Напротив, переход от замедленной стадии разряда к скорости определяющей PBB рекомбинации наблюдается при введении в сравнительно сухие этиленгликолевые растворы (до 0,1 мас. % воды) соединений As(V), например, в виде Na₂HAsO₄ [12].

Важно выяснить, насколько широко наблюдается подобная картина. С этой целью в настоящей работе изучено влияние концентрации о-фторфенилбигуанидина на кинетику PBB на железе в водных и этиленгликолевых растворах HC1.

МЕТОДИКА ЭКСПЕРИМЕНТА

Исследования проведены при комнатной температуре в водородной атмосфере на железе «армко» (с химическим составом, мас. %: C – 0,02; Mn – 0,035; Cr - 0,14; S - 0,02; P - 0,025) в водно-этиленгликолевых ($C_{\text{воды, исх}}$ – до 0,1 мас. % H₂O) средах с равновесным содержанием воды - 10 мас. % (введение бидистиллята) и электролитом состава $x \, M \, HCl + (1 - x) \, M$ LiCl. Исходный растворитель насыщали хлористым водородом, получаемым взаимодействием NaC1 с раствором H₂SO₄ и последующим доведением до заданной концентрации HC1. LiC1 предварительно сушили при 107 ± 5 °С и затем вводили в рабочий раствор в нужном количестве. Исследования проведены посредством потенциостатической поляризации (потенциостат ІРС -PRO) в двух экспериментальных сериях: относительно равновесного водородного электрода с тем же фоновым раствором (что позволяло непосредственно оценить связь кинетики процесса с перенапряжением водорода) и водного насыщенного хлоридсеребряного электрода.

Железный электрод армировали в оправу из эпоксидной смолы с отвердителем полиэтиленполиамином. Рабочую поверхность (1 см²) полировали наждачной бумагой разных номеров до 6-го класса чистоты, обезжиривали ацетоном, промывали рабочим растворителем и сушили фильтровальной бумагой. Использована трехэлектродная электрохимическая ячейка из стекла «Пирекс» с разделенным шлифом анодным и катодным пространствами. Статистическую обработку экспериментальных данных проводили по методике малых выборок [13] с доверительной вероятностью 0,95 и коэффициентом Стьюдента 2,447.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В фоновых водных растворах и содержащих офторфенилбигуанидин (о-ФФБГ) РВВ протекает в кинетической области, соответственно изменение скорости вращения дискового электрода не влияет на скорость процесса (рис. 1).

Подобная картина наблюдается и в этиленгликолевых средах с тем же составом электролита, очевидно,

Рис. 1. Влияние скорости вращения дискового электрода на плотность катодного тока на железном электроде в водных растворах с составом электролита 0,1 М HC1 + 0,9 М LiC1 при сдвиге потенциала на 0,05 В от $E_{\text{кор.}}$ 1 – фоновый раствор; 2 – дополнительно введен 1 мМ о-ФФБГ

благодаря полной диссоциации HC1 и LiC1 на ионы в силу высокой диэлектрической проницаемости $C_2H_4(OH)_2$, равной 37 при 20 °C [14] и наличию аномальной подвижности иона гликолия $C_2H_4(OH)_2H^+$ [15].

Отметим, что о-ФФБГ, как и гуанидин [15] является очень сильным основанием. Так, р K_a продукта протонирования гуанидина ГУН⁺ составляет от 11 до 13,6. Близким является соответствующее значение р K_a и для о-ФФБГН⁺. Это следует из величин дробных электрических зарядов на атомах о-ФФБГ (δ), которые приведены на рис. 2. Они мало отличаются от соответствующих значений для гуанидина, что показано квантово-механическим расчетом. Нами с этой целью использован подход, в котором уравнение Шредингера решено с рядом приближений. В частности, расчет проводился только для валентных электронов с применением стандартных не оптимизированных базисных функций атомных орбиталей.

Следовательно, в изученных условиях о-ФФБГ существует в растворах практически нацело в протонированной форме, которую обозначим через о-ФФБГН⁺. Тогда равновесная концентрация

$$H^+_{solvent, pabh} = H^+_{solvent, ucx} - C_{o-\Phi\Phi \beta \Gamma}$$

где $C_{\text{o-}\Phi\Phi \boldsymbol{\Gamma}\boldsymbol{\Gamma}}$ – исходная концентрация производного гуанидина.

Следовательно, в присутствии о-ФФБГ в растворе помимо реакции (1) возможен разряд по уравнению (4)

Рис. 2. Распределение электронной плотности на атомах молекулы о-ФФБГ

$$o-\Phi\Phi \delta\Gamma H^{+} + e \rightarrow H_{ac} + o-\Phi\Phi \delta\Gamma.$$
(4)

В [16–17] проведен теоретический анализ кинетики РВВ с учетом следующих условий, результаты которого использованы нами для дальнейшего анализа:

 на металлических системах реализуется один из маршрутов (1), (2) или (1), (3);

 в составе электролита отсутствуют поверхностноактивные составляющие;

 не рассматривается природа центров адсорбции атомов водорода;

 использована общая феномелогическая заместительная изотерма Конуэя–Гилеади;

ад-атомы, образующиеся в реакции (1) на активном центре типа «а», способны латерально диффундировать к центру «а^{*}», на которых протекают реакции (2) или (3);

 – образующаяся молекула Н_{аде} быстро десорбируется или встраивается в 3D-зародыш газового пузыря.

Тогда, согласно [16, 18] в условиях замедленной латеральной диффузии должны наблюдаться следующие кинетические параметры: $d\eta/d \lg i_k$ и $\partial \lg i_k/\partial \lg C_{H^+}$, равные соответственно 0,079 В и 0,25. Значение ($\partial \lg i_k/\partial \lg C_{H^+}$)_η составляет 0,75. Величина $d\eta/d \lg C_{H^+}$ авторами не оценивалась.

С учетом предложенного подхода, данных табл. 1 и приведенных в [17], можно постулировать, что в фоновых растворах на железе РВВ протекает в условиях замедленного разряда. Та же картина наблюдается в присутствии 0,5 мМ о-ФФБГ. Однако уже наличие 1 мМ о-фторфенилбигуанидина приводит к замедленной реакции (3). Ранее подобный переход наблюдался в [12] при введении аниона НАз042-. С последующим увеличением C_{о-ФФБГ} до 5 и 10 мМ лимитирующей РВВ становится латеральная диффузия. Несколько завышенное по сравнению с полученным в [16-18] значение величин $d\eta/d \lg i_k$ и $dE/d \lg i_k$, видимо, обусловлено вторичными факторами. В частности, возможной соадсорбцией атомов Н и анионов С1-. Подобные эффекты может обусловить и конкурентная адсорбция молекул воды.

Важно было подтвердить возможность замедленной латеральной диффузии на других объектах. Для этой цели использовали этиленгликолевые растворы с 10 мас. % H₂O, в которых на железе, как уже отмечалось, замедленной является реакция (3) [12, 19]. Эти результаты хорошо воспроизводимы и, как следствие, вновь были получены при проведении настоящих исследований (рис. 3).

Однако введение уже 0,1 мМ о-ФФБГ приводит к принципиальным изменениям кинетики процесса. Замедленной становится латеральная диффузия H_{anc} , а PBB протекает с величинами $(\partial \lg i_K / \partial \lg C_{H^+})_E$ и $(\partial \lg i_K / \partial \lg c_{H^+})_\eta$, равными соответственно 0,75 и 0,25 (рис. 4).

Та же картина наблюдается при трехкратном возрастании *С*_{о-ФФБГ}. Но наличие уже 1 мМ о-фторфенилбигуанидина приводит к замедленному разряду (рис. 5). Последующее увеличение *С*_{о-ФФБГ} вплоть до 40 мМ качественно не изменяет кинетические параметры РВВ в таких средах. Полная их сводка приведена в табл. 1.

Рис. 3. Кинетика РВВ на железе в фоновых этиленгликолевых (10 мас. % H₂O) растворах с *x* M HC1 + (1 – *x*) M LiC1 с *x*, моль/л: 1 – 0,99; 2 – 0,50; 3 – 0,10; 4 – 0,05

Рис. 4. Кинетика реакции выделения водорода на железе в этиленгликолевых растворах с 10 мас. % H_2O и составом электролита *x* M HC1 + (1 – *x*) M LiC1и содержанием о-ФФБГ, равным 0,1 мМ. *x*, моль/л: 1 – 0,99; 2 – 0,50; 3 – 0,10; 4 – 0,05

Рис. 5. Кинетика реакции выделения водорода на железе в этиленгликолевых растворах с 10 мас. % H_2O и составом электролита *x* M HC1 + (1 – *x*) M LiC1 в присутствии 1 мМ о-ФФБГ. *x*, моль/л: 1 – 0,99; 2 – 0,50; 3 – 0,10; 4 – 0,05

Рис. 6. Зависимость скорости диффузии водорода через стальную мембрану от концентрации о-ФББГ в водном-этиленгликолевом (10 мас. % воды) растворе при потенциале коррозии. Состав электролита: 1 – 0,99 М HCl + 0,01 M LiC1; 2 – 0,05 М HCl + 0,95 M LiC1

Таблица 1

С _{о-ФФБГ} ', ммоль∕л	$-\frac{dE}{d \lg i_k}, \hat{A}$	$\frac{dE}{d \lg C_{_{H^+}}}, \hat{A}$	$\left(\frac{\partial \lg i_K}{\partial \lg C_{H^+}}\right)_{\!\!\mathring{A}}$	$\frac{d\eta_H}{d \lg i_k}, \hat{A}$	$\frac{d\eta_H}{d \lg C_{H^+}}, \hat{A}$	$\left(\frac{\partial \lg i_k}{\partial \lg C_{H^+}}\right)_{\eta}$
0	0,125	0,090	0,45	0,125	0	0
0,1	0,110	0,120	0,75	0,110	0,060	0,25
0,3	0,120	0,067	0,75	0,120	0,030	0,25
0,5	0,125	0,060	0,70	0,125	0,050	0,30
1,0	0,120	0,100	0,90	0,120	0,040	0,45
5,0	0,120	0,120	0,90	0,120	0,075	0,45
10,0	0,125	0,100	0,75	0,125	0,065	0,40
20,0	0,130	0,110	1,10	0,130	0,100	0,60
30,0	0,110	0,100	1,20	0,110	0,090	0,50
40,0	0,120	0,120	1,30	0,100	0,100	0,65

Кинетические параметры PBB на железе в присутствии о- $\Phi\Phi$ БГ в этиленгликолевых растворах с 10 мас. % H₂O и составом электролита *x* M HCl + (1 – *x*) M LiCl

Важно было выяснить, как сказывается изменение природы замедленной стадии на кинетике диффузии водорода через мембрану. С этой целью изучен этот процесс с использованием фоновых растворов и содержащих различные добавки о-ФФБГ. Можно было ожидать принципиальных изменений кинетических закономерностей в условиях различной природы замедленной стадии, наличие изломов или перегибов на соответствующих кривых в координатах $i_{\rm H}$, $C_{\rm o-\Phi \Phi Б \Gamma}$. Однако оказалось, что скорость диффузии водорода через мембрану $i_{\rm H}$ практически не зависит от этого фактора (рис. 6).

ОБСУЖДЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

По-видимому, смена контролирующей стадии PBB по мере возрастания степени заполнения активных центров АЦ поверхности металла частицами адсорбата является достаточно распространенным явлением. При этом частицы различной природы: Н_{аде}, молекулы растворителя и вводимых поверхностно-активных веществ либо продуктов их превращения должны быть способны адсорбироваться на единых АЦ поверхности, в связи с чем

$\theta_{\Sigma} = \theta_{a g c} + \theta_{solv} + \theta_{\Pi A B},$

где θ_i соответственно степень заполнения поверхности адсорбированными атомами водорода, молекулами растворителя и частицами вводимого вещества (о- $\Phi\Phi \Delta \Gamma$) или продуктов его взаимодействия (о- $\Phi\Phi \Delta \Gamma \Pi^+ - в$ данном случае). Одновременно активные центры поверхности железа энергетически неоднородны, что обусловливает различие в кажущейся энергии активации $E_{A, i}$ адсорбции. При некоторой величине θ_{Σ} замедленной является стадия разряда (1). Иначе говоря, в этом случае $E_{A,1}$ существенно больше $E_{A,2}$, $E_{A,3}$ и $E_{A,1}$ иф, где цифра в нижнем индексе указывает на номер соответствующей стадии РВВ и латеральной диффузии H_{anc} . Замедленность стадии (1) имеет место в некотором интервале $\Delta G_1 - \Delta G_2$ величин изменения свободной энергии адсорбции Гиббса. С последующим рос-

том θ_{Σ} соотношение значений $E_{A, i}$ по абсолютной величине меняется. $E_{A,3}$ становится наибольшей, а стадия (3) замедленной (стоком $H_{a,c}$ по реакции (2) можно пренебречь). Этот случай реализуется в ином интервале $\Delta G_2 - \Delta G_3$ изменения свободной энергии адсорбции Гиббса. Наконец, вблизи θ_{Σ} , приближающейся к 1, существенно снижается доля свободных активных центров, по которым диффундируют $H_{a,c}$, что необходимо для протекания стадии (3), $E_{A, , диф}$ резко возрастает и реализуется неравенство $E_{A, , , ди\phi} > E_{A,3}$. В таких условиях латеральная диффузия $H_{a,c}$ становится лимитирующей.

С достижением $\theta_{\Sigma} = 1$ разряд сольватированных ионов водорода протекает на частицах первого монослоя, а реакция (1), согласно данным табл. 1 и 2, вновь становится лимитирующей. Тогда возможные последующие стадии типа (2) и (3), также реализуемые во втором монослое, могут оказаться квазиравновесными. При достаточно малых величинах энергии связи Fe–H следует допустить и разряд по реакции, подобной стадии (2), когда один из участвующих в ней реагентов расходуется из первого монослоя.

В целом наблюдается ряд: замедленный разряд \rightarrow замедленная химическая рекомбинация \rightarrow замедленная латеральная диффузия \rightarrow замедленный разряд, реализующийся по мере увеличении концентрации о-ФФБГ. Причем в этом ряду может отсутствовать первая позиция (замедленная стадия (1)), если θ_{solv} таково, что находится в интервале значений $\Delta G_2 - \Delta G_3$. Тогда наличие даже небольшой концентрации о-ФФБГ приводит к замене замедленной стадии рекомбинации (3) – лимитирующей латеральной диффузией. Предшествующий замедленный разряд в этом случае вообще не должен наблюдаться, что экспериментально имеет место в этиленгликолевых растворах, содержащих 10 мас. % H₂O.

Все изложенное схематично показано на рис. 7, на котором кривые AB, CD и MN характеризуют соответственно зависимость энергии активации реакций (1), (3) и латеральной диффузии H_{anc} от суммарной степени заполнения AU. В точке F соблюдаются соотношения $E_{A,1} = E_{A,3}$ и $E_{A,3} > E_{A, \mu \mu \varphi}$. При $\theta_{\Sigma} < \theta_{E}$ замедленным является разряд. С обращением последнего неравенства (правее точки F) лимитирующей становится реакция (3).

Рис. 7. Схематическая зависимость энергии активации различных стадий РВВ от степени заполнения активных центров поверхности железа. Пояснение в тексте

Далее по мере увеличения степени заполнения поверхности, а точнее ее активных центров, достигается точка Е, соответствующая θ_E , для которой действительны соотношения:

$E_{A,3} = E_{A,\mu\phi}; E_{A,\mu\phi} > E_{A,1}$

Тогда при $\theta_{\Sigma} > \theta_E$ (участок EN) замедленной становится латеральная диффузия. Если в интервале $\theta_{\Sigma} < \theta_F$ участок AF расположен ниже отрезка CF в соответствии с рис. 8, то замедленный разряд в суммарном ряду экспериментально наблюдаться не будет (обводненные этиленгликолевые растворы HC1 с 10 мас. % воды).

Исследование кинетики PBB показывает, что природа ее замедленной стадии определяется характером адсорбированных молекул растворителя, компонентов электролита и поверхностно-активных веществ. Меняя их природу и концентрацию, можно фиксировать характер лимитирующих стадий реакции и изучать закономерности PBB применительно к заданным условиям.

Подход, связанный с использованием величин θ_H^r и

 Θ_H^S , позволяет интерпретировать широко наблюдаемые отсутствия однозначной связи между кинетикой диффузии водорода в металл в растворах электролитов и природой замедленной стадии РВВ. Более того, он позволяет прогнозировать пути целенаправленного подбора ингибиторов наводороживания металлических материалов (применительно к процессам коррозии) и стимуляторов абсорбции водорода (применительно к проблеме создания его аккумуляторов, имеющих принципиальное значение для решения ряда проблем водородной энергетики) [20–29].

ЛИТЕРАТУРА

- Фрумкин А.Н. Избранные труды: Перенапряжение водорода. М.: Наука, 1987. 240 с.
- Фрумкин А.Н. Избранные труды: Электродные процессы. М.: Наука, 1988. 373 с.
- Томашов Н.Д. Теория коррозии и защиты металлов. М.: Изд-во АН СССР, 1959. 592 с.

- Розенфельд И.Л. Атмосферная коррозия металлов. М.: Изд-во АН СССР, 1960. 372 с.
- 5. Daoping T. // Electroanalyt. Chem. 2010. V. 644. № 2. P. 144-149.
- Lukaszewski M., Kedra T., Czerwinski A. // J. Electroanalyt. Chem. 2010. V. 638. № 1. P. 123-130.
- Вигдорович В.И., Дьячкова Т.П., Пупкова О.П., Цыганкова Л.Е. // Электрохимия. 2001. Т. 37. № 12. С. 1437-1445.
- Цыганкова Л.Е., Вигдорович В.И., Вигдорович М.В. // Electroanalytical Chemistry Research Development / editor P.N. Yiang. N. Y., 2006. P. 135-182.
- Вигдорович В.И., Цыганкова Л.Е. Электрохимическое и коррозионное поведение металлов в кислых спиртовых и водно-спиртовых средах. М.: Радиотехника, 2009. 328 с.
- Вигдорович В.И., Матвеева М.В. // Электрохимия. 2006. Т. 42. № 12. С. 1480-1487.
- Вигдорович В.Н., Цыганкова Л.Е., Шель Н.В., Зарапина И.В., Матвеева М.В. // Электрохимия. 2007. Т. 43. № 7. С. 843-850.
- Вигдорович В.И., Цыганкова Л.Е., Копылова Е.Ю. // Электрохимия. 2003. Т. 39. № 7. С. 836-843.
- Физико-химические методы анализа / под ред. В.Б. Алесковского и К.Б. Яцимирского. Л.: Химия, 1971. 424 с.
- Крешков А.П., Быкова Л.Н., Казарян Н.А. Кислотно-основное титрование в неводных средах. М.: Химия, 1967. 192 с.
- Альберт А., Сержент К. Константы ионизации кислот и оснований. М.: Химия, 1964. 179 с.
- Введенский А.В. // Коррозия: материалы, защита. 2011. № 12. С. 23-29.
- Vigdorovich V.I., Tsygankova L.E., Balybin D.V. // J. Electroanalyt. Chem. 2011. V. 653. № 1–2. P. 1-6.
- Введенский А.В., Гуторов И.А., Морозова Н.Б. // Конденсированные среды и межфазные границы. 2011. Т. 12. № 3. С. 288-300.
- Вигдорович В.И., Дьячкова Т.П., Пупкова О.П., Цыганкова Л.Е. // Электрохимия. 2001. Т. 37. № 12. С. 1437-1445.
- 20. Батраков В.В., Иофа З.А. // Электрохимия. 1965. № 1. С. 123-129.
- Новосельский И.М., Гудина Н.Н. // Электрохимия. 1969. № 5. С. 820-827.
- Harrington D.A., Conway B.E. // Electrochim. Acta. 1987. № 32. C. 1703-1712.
- Кичигин В.И., Шерстобитова И.Н., Кузнецов В.В. // Электрохимия. 1976. №. 12. С. 315-318.
- 24. Tilak B.V., Chem C.-P. // J. Appl. Electrochem. 1993. № 23. C. 613-640.
- Krstajić N.V., Grgur B.N., Mladenović N.S., Vojnovic M.V., Jakšić M.M. // Electrochim. Acta. 1997. № 42. C. 323-330.
- Shibata S., Sumino M. // Electrochim. Acta. 1986. № 31. С. 217-225.
 Новосельский И.М., Гудина Н.Н. // Электрохимия. 1969. № 5. С. 670-676.
- Кичигин В.И., Шерстобитова И.Н., Кузнецов В.В. // Электрохимия. 1976. № 12. С. 249-255.

Поступила в редакцию 16 ноября 2012 г.

Balybin D.V., Kuzina O.Y., Vigdorovich V.I., Tsygankova L.E. KINETICS OF CATHODE RELEASE OF ELECTRO-LYTIC HYDROGEN IN IRON AND ITS SOLID-STATE DIF-FUSION THROUGH STEEL MEMBRANE IN WATER-ETHYLENE GLYCOL SOLUTION HC1 IN PRESENCE OF o-FLUORO-PHENIL-BIGUANIDINE (o-FPBG)

The influence of the concentration of o-fluoro-phenilbiguanidine (0.5–40 mM) on the kinetics of the reaction of hydrogen separation in iron in flooded ethylene glycol (10 wt. % H₂O) solutions with electrolyte composition *x* M HC1 + (1 – *x*) M LiC1. It is shown that in flooded environments at introduction and with the increasing concentration of o-fluoro-phenil-biguanidine a transition from one slow stage to another according to row: slow recombination \rightarrow slow lateral diffusion \rightarrow slow discharge \rightarrow slow lateral diffusion \rightarrow slow discharge.

Key words: solid-state diffusion; comparison electrode; lateral diffusion; o-fluoro-phenil-biguanidine; pH electrode; kinetics of HAE; disk electrode; steel membrane.